Vix Spx Seasonality By Month, Even Keel

While seeing some “sell in may” headlines a while ago, thought i’d pull up the monthly mean returns for spx and vix. I wanted to see them on an even keel, so that each month starts at 0%, to better gauge their monthly behaviour

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import quandl
import calendar

%matplotlib inline

Since yahoo data went dark, had to pull it in manually. There is a more intelligent solution posted in Trading With Python blog

spx = pd.read_csv("../Data/Spx.csv", index_col="Date")
spx.index = pd.to_datetime(spx.index, format="%Y-%m-%d")
spx = spx.apply(pd.to_numeric, errors="coerce")

vix = pd.read_csv("../Data/Vix.csv", index_col="Date")
vix.index = pd.to_datetime(vix.index, format="%Y-%m-%d")
vix = vix.apply(pd.to_numeric, errors="coerce")

Adding dates and stuff to dataframes

def DatesAndPct(df):
 df["day"] = df.index.dayofyear
 df["month"] = df.index.month
 df["year"] = df.index.year
 df["pct"] = np.log(df["Adj Close"]).diff()
 return df

spx = DatesAndPct(spx)
vix = DatesAndPct(vix)

Making a function for plots and plotting e‘m all at once

plt.figure(figsize=(16, 9))
label_props = dict(boxstyle="square", facecolor="w", edgecolor="none", alpha=0.69)

def plotMonths(df, color, line=1, m_names=True):
 df.index = pd.to_datetime(df.index, format="%Y-%m-%d")
 df.set_index(df["day"], inplace=True, drop=True)

 for i in range(1, 13):
 month_name = calendar.month_abbr[i] # Adding month name

 data = df[df["month"] == i]
 out = data["pct"].groupby(data.index).mean()
 out.iloc[0] = 0 # Setting returns to start from zero

 # Getting coordinates for month name labels
 x = out.index[-1]+2
 y = out.cumsum().iloc[-1]-0.01

 # Plotting
 plt.plot(out.cumsum(), linewidth=line, color=color, label="_nolabel_")
 if m_names == True:
 plt.text(x, y, month_name, size=13, bbox=label_props)

plotMonths(spx, "#555555", 2, m_names=False)
plotMonths(vix, "crimson", m_names=True)

plt.title("Vix and Spx mean returns from month start (log scale)") 
plt.plot([], [], label="Vix (since 1990)", color="crimson") # Adding custom legends
plt.plot([], [], label="Spx (since 1950)", color="#555555") # Adding custom legends
plt.axhline(linestyle="--", color="#555555", alpha=0.55)
plt.legend(loc="upper left")
plt.xlabel("Day of year")
plt.ylabel("Log cumulative monthly return")


While im at it, since Crude and Gold also have volatility indexes available, also pulled summaries for them. Crude vs Ovx and Gold vs Gvz



Thanks for your time


One thought on “Vix Spx Seasonality By Month, Even Keel

  1. Quantocracy's Daily Wrap for 05/25/2017 | Quantocracy

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s